

Global Biogeochemical Cycles

Supporting Information for

## Terrestrial pyrogenic carbon export to fluvial ecosystems: lessons learned from the White Nile watershed of East Africa

David T. Güereña<sup>1</sup>, Johannes Lehmann<sup>1,2\*</sup>, Todd Walter<sup>3</sup>, Akio Enders<sup>1</sup>, Henry Neufeldt<sup>4</sup>, Holiance Odiwour<sup>4</sup>, Henry Biwott<sup>4</sup>, John Recha<sup>5</sup>, Keith Shepherd<sup>4</sup>, Edmundo Barrios<sup>4</sup>, Chris Wurster<sup>6</sup>

<sup>1</sup>Department of Crop and Soil Sciences, Cornell University, Ithaca, NY, USA

<sup>2</sup>Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, USA

<sup>3</sup>Department of Biological and Environmental Engineering, Cornell University, Ithaca

NY, USA

<sup>4</sup>World Agroforestry Centre (ICRAF), Nairobi, Kenya

<sup>5</sup>The International Livestock Research Institute, Nairobi, Kenya

<sup>6</sup>School of Earth and Environmental Science, James Cook University, Cairns, Australia

\*Corresponding author, email: CL273@cornell.edu

## **Contents of this file**

Tables S1-S5 Figures S1-S8

| Catchment | Duration of<br>cropping<br>(years) | UTM coordinates of the weir | Size<br>(ha) |
|-----------|------------------------------------|-----------------------------|--------------|
| FA        | n/a                                | 36 N 722299 17517           | 12.8         |
| FB        | n/a                                | 36N 722965 16476            | 8.0          |
| 10A       | 10                                 | 36 N 722299 17517           | 6.2          |
| 10B       | 10                                 | 36 N 722299 17517           | 5.7          |
| 16A       | 16                                 | 36 N 722620 18664           | 7.9          |
| 16B       | 16                                 | 36 N 722074 18671           | 1.4          |
| 62A       | 62                                 | 36 N 723507 19015           | 3.7          |
| 62B       | 62                                 | 36 N 723764 19236           | 4.6          |
|           |                                    |                             |              |

Table S1. Location (UTM coordinates of the weir) and characteristics of the studied headwaters.

| Site             | UTM coordinates    |
|------------------|--------------------|
| R. Yala          | 35M 9279493 681364 |
| R. Nzoia         | 36N 7205070 681364 |
| R. Nyando        | 35M 9279493 681364 |
| R. Awach         | 36M 9961390 682457 |
| R. Sondu-Miriu   | 36M 9999807 627069 |
| R. Gucha         | 36M 9898924 629047 |
| R. Kibuon        | 36M 9279493 681364 |
| R. Simiyu        | 36M 9961390 682457 |
| R. Kagera        | 36M 9961390 682457 |
| R. Mara          | 36M 9831078 608453 |
| R. Nile at Jinja | 36N 1689220 608453 |

Table S2. Geographic coordinates of the sampling locations (UTM) of the rivers sampled in the Lake Victoria Basin.

| Table S3. Field saturated infiltrability across the             |
|-----------------------------------------------------------------|
| Kapchorwa catchments measured by the Cornell                    |
| Sprinkle Infiltrometers. Simulated rainfall rates of            |
| the infiltrometers was 300 mm hr <sup>-1</sup> . No letters are |
| shown since pairwise comparisons were not                       |
| significant (Tukey's HSD, P<0.05, n=8). FA-CH                   |
| represents the charcoal production sites located in             |
| forest catchment FA, FB-PyCexp represents the                   |
| researcher applied charcoal plots located in forest             |
| catchment FB.                                                   |

| Catchment       | Field-saturated infiltrability (mm hr <sup>-1</sup> ) |
|-----------------|-------------------------------------------------------|
| FA              | 168                                                   |
| FA-CH           | 208                                                   |
| FB              | 168                                                   |
| FB-PyCexp       | 148                                                   |
| 10A             | 210                                                   |
| 10B             | 115                                                   |
| 16A             | 77                                                    |
| 16B             | 75                                                    |
| 62A             | 97                                                    |
| 62B             | 111                                                   |
| <i>P</i> -value | 0.0432                                                |

| Table S4. Field saturated infiltrability across        |
|--------------------------------------------------------|
| slope units within the Kapchorwa catchments            |
| measured by the Cornell Sprinkle                       |
| Infiltrometers. Simulated rainfall rates of the        |
| infiltrometers was 300 mm hr <sup>-1</sup> . Different |
| letters indicate significant differences               |
| (Tukey's HSD, $P < 0.05$ , $n = 8$ ). CH represents    |
| the charcoal production sites located in               |
| catchment FA.                                          |

| Catchment       | Field-saturated infiltrability (mm hr <sup>-1</sup> ) |
|-----------------|-------------------------------------------------------|
| СН              | 208 A                                                 |
| 1% <            | 60 B                                                  |
| 1-3%            | 108 AB                                                |
| 3-5%            | 118 AB                                                |
| 5-10%           | 148 AB                                                |
| 10-20%          | 83 AB                                                 |
| 20-30%          | 159 AB                                                |
| 30% >           | 108 AB                                                |
| <i>P</i> -value | 0.0130                                                |

| Table S5. Field saturated infiltrability by land-use within             |
|-------------------------------------------------------------------------|
| the Kapchorwa catchments measured by the Cornell                        |
| Sprinkle Infiltrometers. Simulated rainfall rates of the                |
| infiltrometers was 300 mm hr <sup>-1</sup> . Different letters indicate |
| significant differences (Tukey's HSD, $P < 0.05$ , $n = 8$ ).           |

| Land use              | Field-saturated infiltrability (mm hr <sup>-1</sup> ) |
|-----------------------|-------------------------------------------------------|
| Beans                 | 222 ABC                                               |
| Sweet potato          | 222 ABC                                               |
| Sugarcane             | 186 ABC                                               |
| Forest                | 172 A                                                 |
| Ploughed bare fields  | 171 ABC                                               |
| Napier grass          | 154 ABC                                               |
| Maize                 | 153 AB                                                |
| Unploughed soil       | 150 ABC                                               |
| Fallow                | 110 ABC                                               |
| Tea                   | 102 ABC                                               |
| Homestead – bare soil | 72 ABC                                                |
| Kale                  | 63 ABC                                                |
| Eucalyptus            | 52 BC                                                 |
| Playground –bare      | 39 ABC                                                |
| Pasture               | 39 C                                                  |
| Road                  | 22 BC                                                 |
| Riverine vegetation   | 21 C                                                  |
| Arrow root            | 6 ABC                                                 |
| Homestead – grass     | 6 ABC                                                 |
| Playground - grass    | 6 ABC                                                 |
| <i>P</i> -value       | <0.0001                                               |



Figure S1. Photo of one of the locations in the forest catchment FA where charcoal was produced (July 2012). This practice led to 14 spots of concentrated accumulation of PyC in an area of about 12 m<sup>2</sup> (labeled "CH" in Table 1 and Figure 4 in the main manuscript).



Figure S2. Map of locations of the PyC accumulation from charcoal making in forest catchment FA (assessed May 2013).



Figure S3. Kriging map of the distribution of topsoil (0-0.15 m) PyC stocks in the Kapchorwa catchments. All catchments are oriented with the weir at the bottom of each map to facilitate comparison of the PyC distribution as a function of slope position.



Figure S4. Kriging map of the distribution of topsoil (0-0.15 m) PyC concentrations in the Kapchorwa catchments. All catchments are oriented with the weir at the bottom of each map to facilitate comparison of the PyC distribution as a function of slope position.



Figure S5. Bi-weekly discharge and stream water concentrations of TOC and PyC in natural and agricultural headwater catchments of the Yala River, Kenya. Discharge in catchment 16B was divided by a factor of three to allow for uniform axes scales. Due to much smaller PyC concentrations, these are shown separately in Figure S6.



Figure S6. Bi-weekly discharge and stream water concentrations of total PyC and DPyC in natural and agricultural headwater catchments of the Yala River, Kenya. Discharge in catchment 16B was divided by a factor of three to allow for uniform axes scales (note logarithmic scale of concentration).



Figure S8. Conceptual sketch of the main questions of this study and corresponding sections in the Discussion.